
HBSD External Router Classes

StatisticsManager class:

This class is an implementation of HBSD network statistics management
algorithm described in our paper:

Amir Krifa, Chadi Barakat, Thrasyvoulos Spyropoulos, "An Optimal Joint Scheduling and
Drop Policy for Delay Tolerant Networks”, in proceedings of the WoWMoM Workshop on
Autonomic and Opportunistic Communications, Newport Beach (CA), June 2008.

StatisticsManager class maintains network statistics and update it each time a new metadata
bundle is received or whenever some local storage related events occur (a bundle is dropped due
to congestion, a new bundle is added,…).

StatisticsManager also calculates and returns the utility of a given bundle (given its life time)
with respect to the routing metric to optimize (either the network average delivery rate or delivery
delay).

PeerListener Class:

The PeerListener object exists as a thread dedicated to processing HBSD
router-specific bundles received by peer routers. DTN2 specifies that any EID
with an endpoint that begins with ext.rtr (e.g., dtn://node.dtn/ext.rtr/HBSD)
is to be destined for an external router, and it generates a specific XML
event when it receives a bundle containing the ext.rtr endpoint. When the
HBSD_Routing class receives the event, it dispatches the PeerListener objects
thread to process the bundle. Specifically, the PeerListener thread extracts
the data from the bundle, deletes the bundle, and then makes a call into the
Policy Manager passing the bundles data. This is the recipient half of the
mechanism for exchanging meta data between routers. To send meta data, the
policy manager must inject a bundle into DTN2. This is done by the Policy
Manager via a method in the Requester class.

Requester Class:

This is a utility class responsible for composing and sending all XML messages
to the DTN2 daemon. These classes are used throughout HBSD.

To expand on injecting a bundle, since it is fundamental to HBSD exchanging
meta data with a peer node: When the Requester injects a bundle for the router
it assigns a unique request ID to the bundle. It is up to the policy manager
to later associate the injected bundle with the request using the id. The
Requester only plays a minor role in injecting bundles: it sends the request
to DTN2 after the policy manager creates the data. But it should be noted that
injected bundles are handled differently from other bundles by HBSD. HBSD
creates a Bundle object for an injected bundle, but it does not retain
knowledge of the bundle in the Bundles class.

GBOF class:

This is another utility class, and it contains static methods for manipulating
the GBOF. This includes formatting the GBOF as XML as required by DTN2. It

also includes methods for creating a hash key from the values that make up the
GBOF. This hash key is used extensively and consistently throughout HBSD and
the Policy Manager for referencing a bundle.

HBSD Class:

The HBSD class contains the main body of the router. This class reads the
command line arguments, loads the configuration file (if defined), starts
logging, and sets up the SAX (Simple API for XML) handler. Once initialized,
it joins the DTN2 multicast group and continuously loops receiving locally
broadcast messages from the DTN2 daemon, dtnd. When XML messages are received
from DTN2, the SAX handler is responsible for parsing the message and
dispatching the appropriate method.

HBSD_SAX class:

This class is invoked when HBSD receives an XML message from the DTN2 daemon.
It extends the C++ SAX DefaultHandler class. HBSD_SAX parses the XML message
and calls the corresponding method in the Handlers class.

Handlers class:

This is an abstract class that defines a method for each XML event message
that may be received by HBSD_SAX. The HBSD_Routing class is the real
implementation of the Handlers class. We use an abstract class that supplies
null methods for all XML messages. If the class that extends Handlers, i.e.
HBSD_Routing, does not support an event then the empty method in Handlers in
invoked.

XMLTree class:

This is a utility class. When HBSD_SAX parses an XML message each element is
placed in an XMLTree object. XMLTree objects may be linked to each other to
represent the hierarchy of elements in an XML message. XMLTree objects have
methods for accessing attributes and child elements.

HBSD_Routing class:

The HBSD_Routing class is the heart of the router, extending the methods
defined by Handlers. It is here that the XML messages sent by the DTN2 daemon,
as represented by XMLTree objects, are initially acted upon.

Logging class:

This is an interface that defines the logging class used by the HBSD router.
HBSD provides one implementation of the Logging class: Console_Logging. By
default, Console_Logging is used though you can define which implementation to
invoke via the HBSD configuration file.

Console_Logging class:

This is a simple implementation of the Logging interface that outputs logging
messages to stdout. It is the default logging class

ConfFile class:

This is a utility class that reads and parses the HBSD configuration file.

Bundles class:

This class manages the set of individual Bundle objects.

Node class:

A Node object represents a node, e.g. dtn://node.dtn. HBSD creates a Node
object whenever it learns of a node, such as when a link is established to a
node, or when a received bundle references a node.

Nodes class:

This is the class that manages the set of individual Node objects.

Link class:

A Link object represents a DTN2 link and an instance is created whenever DTN2
notifies HBSD that it has created a link. A Link object may become associated
with a Node object when the link is opened; a DTN2 link that is not open is
not associated with a Node. When a link is open it represents communication
with another node. HBSD will associate the Link with the corresponding Node
object, unless the Node object is already associated with another Link object.
A node will never be associated with more than one link, even if there are
multiple links open to the same node.

Links class:

The Link class manages the set of individual Link objects.

Policy class:

The Policy class defines the interface to be implemented by a Policy Manager.
The interface source code describes the individual methods. By default,
HBSD_Policy implements this class, but other implementations can be defined
via the HBSD configuration file.

HBSD_Policy class:

This class is an implementation of the Policy class. It provides the HBSD
scheduling and drop algorithm, but it is also generically referred to as the
Policy Manager. There are calls into the Policy class sprinkled throughout the
router, often mirroring the XML events defined by the /etc/router.xsd schema
file. HBSD_Policy largely consists of manipulating shadow data structures
dealing with bundles and nodes. The primary function of HBSD_Policy is to
prioritize the delivery and replication of bundles in anticipation of the
local node coming into contact with another node. The assumption is that HBSD
will be able to replicate only a subset of its bundles on each node that it
meets, and that some of the bundles will expire before HBSD comes in contact
with the actual destination node.

More Questions:

Please feel free to drop me an email to Amir.Krifa@sophia.inria.fr if you have
any question related to any class of the HBSD package.

