HBSD Ext ernal Router d asses

Statisti csManager cl ass:

This class is an inplementation of HBSD network statistics managenment
al gorithm described in our paper:

Amir Krifa, Chadi Barakat, Thrasyvoulos Spyropoulos, "An Optimal Joint Scheduling and
Drop Policy for Delay Tolerant Networks’, in proceedings of the WoWMoM Workshop on
Autonomic and Opportunistic Communications, Newfgeach (CA), June 2008.

StatisticsManager class maintains network stasisticd update it each time a new metadata
bundle is received or whenever some local storalgged events occur (a bundle is dropped due
to congestion, a new bundle is added,...).

StatisticsManager also calculates and returns tifiey wf a given bundle (given its life time)
with respect to the routing metric to optimize lfeit the network average delivery rate or delivery
delay).

Peer Li st ener Cl ass:

The Peerlistener object exists as a thread dedicated to processing HBSD
router-specific bundles received by peer routers. DIN2 specifies that any EID
with an endpoint that begins with ext.rtr (e.g., dtn://node.dtn/ext.rtr/HBSD)
is to be destined for an external router, and it generates a specific XM
event when it receives a bundle containing the ext.rtr endpoint. Wen the
HBSD Routing class receives the event, it dispatches the PeerlListener objects
thread to process the bundle. Specifically, the PeerlListener thread extracts
the data from the bundl e, deletes the bundle, and then nakes a call into the
Policy Manager passing the bundles data. This is the recipient half of the
nmechani sm for exchanging neta data between routers. To send neta data, the
policy manager must inject a bundle into DIN2. This is done by the Policy
Manager via a nethod in the Requester class.

Request er Cl ass:

This is a utility class responsible for conposing and sending all XM nessages
to the DTN2 daenon. These cl asses are used throughout HBSD.

To expand on injecting a bundle, since it is fundanental to HBSD exchangi ng
nmeta data with a peer node: Wen the Requester injects a bundle for the router
it assigns a unique request ID to the bundle. It is up to the policy manager
to later associate the injected bundle with the request using the id. The
Requester only plays a mnor role in injecting bundles: it sends the request
to DIN2 after the policy manager creates the data. But it should be noted that
i njected bundles are handled differently from other bundles by HBSD. HBSD
creates a Bundle object for an injected bundle, but it does not retain
know edge of the bundle in the Bundl es cl ass.

@&BCOF cl ass:

This is another utility class, and it contains static methods for manipul ating
the GBOF. This includes formatting the GBOF as XM. as required by DTN2. It



al so includes nethods for creating a hash key fromthe values that nmake up the
GBOF. This hash key is used extensively and consistently throughout HBSD and
the Policy Manager for referencing a bundle.

HBSD C ass:

The HBSD class contains the nmain body of the router. This class reads the
command line argunents, l|oads the configuration file (if defined), starts
| oggi ng, and sets up the SAX (Sinple APl for XM.) handler. Once initialized

it joins the DIN2 multicast group and continuously |oops receiving locally
broadcast nessages from the DITN2 daenon, dtnd. When XM. nessages are received
from DIN2, the SAX handler is responsible for parsing the nmessage and
di spatching the appropriate nethod

HBSD_SAX cl ass:

This class is invoked when HBSD receives an XM. nessage from the DTN2 daenon.
It extends the C++ SAX DefaultHandl er class. HBSD SAX parses the XM. nessage
and calls the corresponding nethod in the Handl ers cl ass.

Handl ers cl ass:

This is an abstract class that defines a method for each XM. event nessage
that may be received by HBSD SAX. The HBSD Routing class is the rea

i mpl enentation of the Handlers class. W use an abstract class that supplies
null methods for all XM nmessages. If the class that extends Handlers, i.e

HBSD Routing, does not support an event then the enpty nmethod in Handlers in
i nvoked.

XM.Tr ee cl ass:

This is a utility class. Wen HBSD SAX parses an XM. nessage each elenment is
placed in an XM.Tree object. XM.Tree objects may be linked to each other to
represent the hierarchy of elenments in an XM nessage. XM.Tree objects have
net hods for accessing attributes and child el enents.

HBSD Routi ng cl ass:

The HBSD Routing class is the heart of the router, extending the nethods
defined by Handlers. It is here that the XM. nessages sent by the DTN2 daenon,
as represented by XM.Tree objects, are initially acted upon.

Loggi ng cl ass:

This is an interface that defines the |ogging class used by the HBSD router.
HBSD provides one inplenmentation of the Logging class: Console_Logging. By
default, Console_Logging is used though you can define which inplenentation to
i nvoke via the HBSD configuration file.

Consol e_Loggi ng cl ass:

This is a sinple inplenentation of the Logging interface that outputs | ogging
nmessages to stdout. It is the default |ogging class

Conf Fil e cl ass:

This is a utility class that reads and parses the HBSD configuration file.



Bundl es cl ass:

This cl ass manages the set of individual Bundl e objects.

Node cl ass:

A Node object represents a node, e.g. dtn://node.dtn. HBSD creates a Node
obj ect whenever it learns of a node, such as when a link is established to a
node, or when a received bundl e references a node.

Nodes cl ass:

This is the class that nanages the set of individual Node objects.

Li nk cl ass:

A Link object represents a DIN2 Iink and an instance is created whenever DTN2
notifies HBSD that it has created a Iink. A Link object may beconme associ ated

with a Node object when the link is opened; a DIN2 link that is not open is
not associated with a Node. When a link is open it represents comunication

with another node. HBSD will associate the Link with the correspondi ng Node
obj ect, unless the Node object is already associated with another Link object.
A node will never be associated with nore than one link, even if there are

multiple links open to the same node.
Li nks cl ass:

The Link class nanages the set of individual Link objects.

Policy class:

The Policy class defines the interface to be inplenented by a Policy Manager.
The interface source code describes the individual nethods. By default,
HBSD Policy inplenents this class, but other inplenmentations can be defined
via the HBSD configuration file.

HBSD Pol i cy cl ass:

This class is an inplementation of the Policy class. It provides the HBSD
scheduling and drop algorithm but it is also generically referred to as the
Policy Manager. There are calls into the Policy class sprinkled throughout the
router, often mrroring the XM. events defined by the /etc/router.xsd schena
file. HBSD Policy largely consists of nmanipulating shadow data structures
dealing with bundles and nodes. The primary function of HBSD Policy is to
prioritize the delivery and replication of bundles in anticipation of the
| ocal node coming into contact with another node. The assunption is that HBSD
will be able to replicate only a subset of its bundles on each node that it
neets, and that sone of the bundles will expire before HBSD comes in contact
with the actual destination node.

More Questi ons:

Pl ease feel free to drop ne an email to Amr.Krifa@ophia.inria.fr if you have
any question related to any class of the HBSD package.




