ICN Development and Evaluation Framework

- Emulation
 - Controlled evaluation scenarios
 - Emulate larger scale
 - Emulate corner cases (e.g., attacks)
 - Reproduce error conditions

- Live Deployment
 - Realistic evaluation scenarios
 - Capture realistic traffic characteristics
 - Validate production software

a) Experiment Description

- An abstract topology is a high level representation of the ‘shape’ of a network experiment
- A concrete topology (or executable experiment description) includes all necessary information to instantiate the experiment (e.g., what concrete resources will be used, how to configure them, etc)
- The Experiment Controller entity represents an executable experiment and can map an abstract topology to a concrete Emulated or Live Topology

b) Experiment Deployment

- The Experiment Runner automates replication (re-execution) of a same experiment until a metric defined by the user converges according to a law
- The compute_metric_callback argument is a user defined function that, based on the experiment metrics, determines whether the experiment has been repeated enough times to be statistically representative

c) Experiment Monitoring

- Errors on critical resources during deployment will cause controlled interruptions of the experiment
- Errors are notified on standard output
- Results can be scheduled for automatic collection at the end of the experiment using a Collector resource (see log excerpt below)
- Results can be downloaded at any time using the trace primitive

d) Data Collection

- Data processing can be done with standard Python libraries, after the Experiment Runner run() method terminates, using the data collected during the execution of the experiments

DEMO

Demonstrating a Unified ICN Development and Evaluation Framework

Alina Guerrelliac*, Damien Saucez*, Priya Mahadevan*, Thierry Turletti*, Walid Dabbous*

*INRIA Sophia Antipolis, France - †PARC, Palo Alto, USA