Motivation

By using simplified implementations and models of protocols, traditional simulators do not provide functional realism. DCE aims to increase the realism of experimentation results by running existing protocol implementations inside a network simulator.

<table>
<thead>
<tr>
<th>Simulator</th>
<th>Testbeds</th>
<th>Emulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Realism</td>
<td>???</td>
<td>✓</td>
</tr>
<tr>
<td>Timing Realism</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Topology Flexibility</td>
<td>✓ (limited)</td>
<td>✓</td>
</tr>
<tr>
<td>Easy Replication</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Easy Debug</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Experimental Scalability</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

What is DCE helpful for?

- To obtain realistic results from network simulation
- To avoid re-implementing possibly complex protocols for simulation (e.g., OSPF or BGP)
- To debug and test your code within a controlled environment
- To create a model of a large scale network (let’s say, a model of an ISP network) in a single node

DCE Architecture

DCE consists of 3 Components:

- **Core layer**
 - virtualization primitives handles stacks, heaps, global memory in a single host process.
- **Kernel layer**
 - as-generative implementation of Linux with glue code
- **POSIX layer**
 - reimplementation of standard socket API

Supported Applications /Kernels:

- Linux kernel (2.6.36, 3.4, 3.5, 3.7, and 3.10)
 - IPv4, IPv6, TCP/UDP, DCCP, mptcp, Mobile IPv6, etc.
- Quagga, PARC ccnx, iperf, ip, ping/ping6, umip, bind9, unbound, httpd, BitTorrent

Demonstration 1

Highlights

- Realistic performance evaluation of CCNx over MANET
- CCNx data transfer simulation
- Network configuration:
 - WiFi mobile nodes, random direction model (RD)
 - MANET routing such as OLSR, DSR (for comparison with CCNx)
- Traffic: ccnpeek, ccncpoe, iperf

Demonstration 2

Highlights

- Realistic simulation (Linux MPTCP)
- Debugging environment (i.e., gdb)

For further information

- Project Web page:
- Contact:
 Hajime Tazaki (tazaki at wide.ad.jp)
 Emilio Mancini (emilio.mancini at inria.fr)

References